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A Fast Technique for Analysis of Waveguides
Piotr Przybyszewski, Jacek Mielewski, and Michal Mrozowski, Member, IEEE

Abstract—This letter presents a new technique for fast cal-
culation of dispersion characteristics in inhomogeneously loaded
waveguides. The method calculates an approximate value of
propagation constant at a desired frequency based on more
accurate computations of the field distribution and propagation
constant at a few selected frequency points. Numerical tests show
that the relative error in propagation constant below 0.05% can
easily be obtained throughout a very wide frequency band for a
dominant mode using accurate data calculated at as few as four
frequency points.

Index Terms—Finite-difference methods, loaded waveguides,
moments methods.

I. INTRODUCTION

CALCULATION of dispersion characteristics of waveg-
uides is one of the fundamental tasks in computational

electromagnetics. Traditionally, at least in frequency domain,
the wide-band characterization of a waveguiding structure
requires repetitive numerical solution of a boundary value
problem at successive frequency points. If the computational
cost of each solution is high, the overall time required to
complete the computation for all points of interest may be
long. Recently, two different approaches have been proposed
to circumvent this problem. One solution [1], [2] expands the
fields at arbitrary frequency using the eigenmodes at cutoff as a
basis. The second approach [3] employs a technique called the
asymptotic waveform evaluation (AWE) that uses the Taylor
series or Pade approximation to represent the dispersion char-
acteristics around a selected frequency point. In this letter we
propose a yet another method which calculates an approximate
value of propagation constant at a desired frequency based
on more accurate computations of the field distribution and
propagation constant at a few selected frequency points.

II. A NALYSIS

Suppose that the problem to be analyzed can be written in
the following operator form

(1)

where are the unknown field and propagation constant,
is the angular frequency, andand are operators derived

from Maxwell’s equations. Let us assume that the above
problem has been solved at discrete points on the frequency
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The authors are with the Department of Electronics, Telecommunications
and Informatics, Technical University of Gdańsk, 80-952 Gdánsk, Poland (e-
mail: pip@pg.gda.p; jamie@eti.pg.gda.pl; mim@pg.gda.pl).

Publisher Item Identifier S 1051-8207(98)02064-9.

axis so that we know triads
which satisfy equation

(2)

as well as which solve
the transposed equation for . Outside these points, we
approximate the solution in the following way:

(3)

with . Substituting the above decomposition into
(1) and simultaneously adding and subtracting one
gets

(4)

Using (2) we can now replace the first two terms under the
summation sign with . Accordingly, the equation to be
solved becomes

(5)

This equation is converted to a set of linear equations by taking
the inner product of (5) with the eigenfunctions which
satisfy the equation transposed to (2). This procedure gives a
generalized eigenvalue problem in the form

(6)

where , , ,
and the elements of matrices and are given by

and , respectively, where
denotes an inner product. Solving the above problem for
and one gets the approximate dispersion characteris-
tics and field distribution for up to modes of a waveguide of
interest. In practice, one often is interested in the dispersion
characteristics of a particular mode. In that case, the basis

consists of the solutions
evaluated for this particular mode at different frequency points.
This choice gives a better approximation of the mode of
interest but increases the error for the remaining 1 modes.
Note, that if the number of expansion terms is small, the
solution of eigenvalue problem (6) is very fast.

In order to illustrate how this new technique can be used in
practice let us consider a closed waveguide inhomogeneously
loaded with an isotropic dielectric medium. The wave equation
for such a structure is given by [4]

(7)
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Fig. 1. Dispersion characteristic of a dominant mode in a rectangular image guide calculated using the FDFD method. Symbols A–D indicate four points
at which modal fields have been calculated and used as a basis in a fast algorithm described in this letter.

Fig. 2. Error in propagation constant (relative to FDFD computations shown in Fig. 1) in a fast algorithm with fields evaluated at points A and B (Basis
1) or A, B, C, D (Basis 2) used as a basis in expansion (3).

where is the transverse electric flux density while are
the (absolute) permeability and permittivity of the medium,
respectively. If the medium is lossless and the guide walls are
perfectly conducting, the equation transposed to (7) is fulfilled
by [4], where is a unit vector in the direction
and is the transverse magnetic flux density. (The asterisks
in the subscript denotes that a field corresponding to
is substituted. For noncomplex modes , otherwise

.) Comparing (7) with (1) it is seen that .
Accordingly, the elements of matrices and can easily be

evaluated as follows:

(8)

(9)

where denotes the cross section of a guide.

III. RESULTS

The technique described in the preceding section has been
tested on several structures. In this letter we shall give the
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Fig. 3. Electric (solid line) and magnetic (dashed line) field energy error (relative to FDFD computations shown in Fig. 1) in a fast algorithm with fields
evaluated at points A and B (Basis 1) or A, B, C, D (Basis 2) used as a basis in expansion (3).

results for the dominant mode of an image guide shown in
Fig. 1.

In order to be able to evaluate the accuracy of the present
method the complete dispersion characteristic and the modal
fields for the dominant mode have been found using the finite-
difference frequency-domain (FDFD) with a grid of 4020
points. This implied solving a sparse eigenvalue problems with
a matrix of the order of 1580 for all points within frequency
range. Subsequently, the new algorithm was applied with
two different sets of points used as a basis. (These points
are denoted as A–D in Figs. 1–3.) In the first test the basis
consisted of fields computed at and at cutoff (points A,
B). In the second test two additional points (C, D) were used.
This implies that the sparse solver had to be applied only two
(test 1) or four times (test 2). Using the fields computed at
these points two small eigenvalue problems were constructed
and solved at the same points at which the reference solution
was computed with the FDFD method. Since this time the
problems were very small (2 2 for Basis 1 and 4 4 for
Basis 2) the computational workload of this step was marginal.
Figs. 2 and 3 show the errors in propagation constant and
the electric and magnetic field of the new algorithm relative
to the reference FDFD solution. It is seen that even for the
smallest basis consisting of just two points the new algorithm
gives very good results below cutoff and may be regarded as
quite satisfactory (error in propagation constant below 1%)
also above cutoff. Adding two more points to the basis pushes

the relative error in propagation constant below 0.05% for all
points within the region of interest.

IV. CONCLUSIONS

A new technique for the fast analysis of waveguides has
been developed. The technique has a hybrid character and
consists of two steps. In the first step the eigenvalue problem
is solved for the propagation constant and modal field distri-
bution at a few discrete frequency points using an arbitrary
numerical or analytical technique. Subsequently, a new small
matrix eigenvalue problem is constructed using these solutions
as a basis. This new problem yields the propagation constant
and field distributions for all frequency points of interest.
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